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Coupling of thermal and mass diffusion in regular binary thermal lattice gases
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We have constructed a regular binary thermal lattice gas model in which the thermal diffusion and mass
diffusion are coupled and form two nonpropagating diffusive modes. The power spectrum is shown to be
similar in structure as for the one in real fluids, in which the central peak becomes a combination of coupled
entropy and concentration contributions. Our theoretical findings for the power spectra are confirmed by
computer simulations performed on this model.
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The power spectrum of light scattered by a binary so
tion is more complicated than that of a single compon
fluid. The central peak contains combined effects of entro
and concentration fluctuations@1,2#. The cross effects are
well known in nonequilibrium thermodynamics as the D
four effect and the Soret effect, and are caused by the c
pling between heat flow and diffusion. For example, h
may be transported by conduction but also by diffusion
the two components. In the simplified two-dimension
model presented here this coupling phenomena can be
lyzed in detail.

Lattice gas automata~LGA! are plagued by many defect
Although some of these defects can be removed, the mo
are, in general, not suitable for modeling realistic fluids b
cause they do not exhibit a fully realistic thermodynami
behavior. They are, however, useful tools for understand
more fundamental problems in thermodynamics related
discretization and testing concepts in statistical mecha
@3#. In LGA, the positions and velocities of pointlike pa
ticles are discretized onto a lattice@4#. The dynamics consis
of a cyclic process of propagating particles according to th
velocity to a neighboring node followed by local collision
that typically conserve mass and momentum.

In order to recover the macroscopically isotropic Navi
Stokes equations the lattice in two-dimensions is usu
chosen to be hexagonal. Apart from problems related to t
early LGA were also plagued by unwanted spurious inva
ants@5–7#. A satisfactory extension to include thermal pro
erties in LGA was made by Grosfils, Boon, and Lallema
~GBL!, who introduced a multiple speed model, defined o
two-dimensional hexagonal lattice@8#. The model uses a ve
locity set consisting of a single rest particle and three rin
each containing six directions, with velocities of magnitu
1, A3, and 2.

Generalizations of LGA to mixtures have been used
study interfaces and phase transitions@9#. Some of these
models use a passive label to distinguish the different spe
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@10#. In other models the particles live on different lattic
@11,12#. However, these models are athermal and do
show the coupling phenomena we are interested in. A
species thermal model by using a passive label, is also
suitable, because mass and heat transport would compl
decouple@13#.

Here we introduce a thermal binary lattice gas model
pable of capturing the essence of a real mixture with resp
to coupling of entropy and concentration fluctuations. T
model allows us to calculate the coupling quantitatively a
separate the different contributions, which in the continuo
case in general is only possible in the low-density limit. T
two species of particles live on separate two-dimensio
hexagonal lattices and are labeled red and blue. Indep
dently they would behave as normal GBL models, but
allow the particles to interact during the collision phase, i
momentum and/or energy can be transferred from one to
other lattice. The number of red and blue particles, howe
is constant in every collision.

The state of a node can be specified by a set of Bool
occupation numbersnim , denoting the presence or absen
of a particle of typem5$r ,b% in velocity channelci , where
i is a label running over all 19 velocities. Due to the Boole
nature of LGA, the ensemble average of the occupation n
bersf im in equilibrium, is described by a Fermi-Dirac distr
bution

f im[^nim&5
1

11exp@2am1bci
2/22g•ci #

, ~1!

wherea r , ab , b, andg are Lagrange multipliers. Here,b is
the inverse temperature,a r andab fulfill a chemical poten-
tial role, andg is a parameter conjugate to the flow velocit
For simplicity, we will work in the overall zero momentum
case by settingg50.

A collision outcome is chosen with equal probabili
amongst all members of anequivalence class, i.e., a group of
states having the same red mass, blue mass, total momen
and total energy. In aregular binary mixtureat most two
particles, each of different type, can be in the same velo
©2001 The American Physical Society02-1
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state@14#. This differs from thecolor mixturewhere the par-
ticles of the original single specie model are given a colo
distinguish between them and was analyzed in the case o
GBL color mixture ~CGBL! @13#. In that case the collision
operator could be eqnarray into two separated steps: a
collision and an independent redistribution of the colo
which made the simulations a relative simple extension
normal GBL simulations, even though the number of diff
ent states in the CGBL model was 319. Here we have a
‘‘true’’ 38-bit model leading to 238 states on which the col
lision operator has to act. Clearly a naive lookup-table st
egy in order to simulate this system is only feasible if t
table is constructed partially and stored temporarily dur
the simulations, due to the excessive memory requirem
for storing the complete table.

Regular binary mixtures, however, do allow for a conv
nient solution, which is less efficient than storing the co
plete collision table, but has still a relative good performan
~about a factor 2–5 slower than CGBL!. Rather than storing
a collision table based on the states, we make one base
the different classes. This allows us to generate a set of
going classes for the two species and via a GBL-like proc
an outgoing state. If this is combined with the 48 symme
operations~six rotations, two reflections, red/blue symmet
and particle/hole symmetry!, we get a working algorithm tha
can be used on a computer with 256 MB of memory@15#.

The theoretical framework for thermal lattice gases is w
established@16#, and is here extended to binary mixtures.
is possible to solve the many-body dynamics of LGA
using the Boltzmann molecular chaos assumption. Altho
one would expect deviations for higher densities, it turns
that these deviations are very small, in fact for many p
poses even within a few percent accuracy. Therefore,
vided the fluctuations in the average occupation numbers
small, a Taylor expansion of the collision term in the neig
borhood of the equilibrium distribution is justified, yielding
linearized collision operatorV. Then, in first approximation
the behavior of the system can be obtained by analyz
these deviations in terms of eigenmodes.

In the analysis of the behavior of fluctuations in LG
mixtures it is convenient to introduce the colored scalar
product@13,17#

^AuB&5(
im

A~cim!B~cim!k im , ~2!

wherek im5 f im(12 f im) is the variance in the average occ
pation number. For reasons of symmetryk is included in
definition of the right vectors, i.e.uB& im5k imB(cim).

Following the method of Re´sibois and Leener@18# we
need to find thek-dependent eigenfunctions and eigenvalu
of the single-time step Boltzmann propagator

e2ık•c~11V!uc~k!&5ez(k)uc~k!&. ~3!

Within this formulation the hydrodynamic modes are char
terized by the fact that the eigenvalueszm should go to zero
in the limit of small wave vectors. Therefore, we can der
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thesek-dependent eigenvectors and eigenvalues by makin
Taylor expansion ink. The resulting eigenvalues to secon
order ink are given by

z6~k!56ıcsk2Gk2, ~4!

z'~k!52nk2, ~5!

zs6
~k!52s6

o k2. ~6!

It is with these modes that the binary-mixture responds
deviations from thermal equilibrium. The first two eige
modes describe sound propagating~in opposite directions
parallel tok) with G the sound damping coefficient andcs
the adiabatic sound speed. The third eigenvalue describ
shear mode withn the shear viscosity coefficient. The la
two eigenvalues represent purely diffusive, nonpropaga
processes, but are in general not directly related to a fam
transport coefficient. Rather they always appear in comb
tion with each other and can be expressed in other trans
properties by

s6
o 5

1

2
~x1D!6

1

2
A4Q21~x2D!2, ~7!

wherex is the generalized thermal diffusivity,D a property
related to the mass diffusion, andQ can be considered as
measure of the correlation between the two. Another in
esting relation can be obtained by introducing the ratio of
specific heatsg

G5
1

2
@n1~g21!x#. ~8!

In Fig. 1 the diffusive transport properties are shown
fixed reduced temperatureu5exp(21

2b). The modess6
o con-

verge for low densities to the thermal diffusivity and ma
diffusion, due to the decoupling of the fluctuations in entro
and energy. This behavior resembles the situation for bin
solutions where a formula similar to Eq.~7! exists@2#, with
the same decoupling in the very dilute limit. In our mod

FIG. 1. The diffusive transport values as a function of the d
sity at reduced temperatureu50.1 and fraction of red particles
Pr50.9.
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BRIEF REPORTS PHYSICAL REVIEW E 64 062102
this means that the ratioQ/(x2D) vanishes. The value o
Q, however, will in general remain small but finite due to t
divergencies of the transport coefficients in the low-dens
limit of LGA.

The decoupling is also observed in the limit of a sing
specie, i.e., the fraction of blue particlesPb goes to zero. In
this limit the model reduces to a normal GBL model, alb
that the diffusion related propertyD will remain finite. For
reasons of symmetrys6

o also converge tox and D in the
limit of equal red and blue density. In fact this special lim
can be analyzed completely in a similar way as done
CGBL @13#. Finally decoupling appears in two other cas
due to the duality of the model under interchanging partic
and holes, these are the high-density limit and the limit
which one of the sublattices is almost completely filled.

The decoupling arises from an effective equipartition
the model making the ratio of the average occupation nu
bersf ir / f ib the same constant for each velocity channeli. As
can be seen in Fig. 1 there seem to be also intermed
values at which decoupling appears. Although indeed thes6

o

converge tox andD this is not due to decoupling via equ
partition but due to the cancellation of terms. This prope
could obviously be used in the analysis, but the location
these points depends in a nontrivial way on the chosen
tem parameters.

The Boltzmann approximation enables us to calculate
modes up to fairly large wave vectors, even within the g
eralized hydrodynamic regime. In the hydrodynamical
gime of small wave vectorsk, small frequenciesv, the hy-
drodynamical modes are well separated from the kin
modes that, due to their exponential decay, can be negle
In combination with a Taylor expansion, this allows one
derive a Landau-Placzek approximation of the spectral d
sity S(k,v),

S~k,v!

S~k!
5(

6

g21

g S 16
x2D

s1
o 2s2

o D s6
o k2

v21~s6
o k2!2

1(
6

1

g

Gk2

~v6csk!21~Gk2!2
1

1

g
@G1~g21!x#

3
k

cs
(
6

csk6v

~v6csk!21~Gk2!2
, ~9!

whereS(k) is the static structure factor.
The spectrum contains an unshifted central peak an

formed by two Lorentzians due to the nonpropagating p
cesses characterized bys6

o . The shear mode does not co
tribute to the spectrum and the two propagating modes
to the presence of the two frequency-shifted Brillouin line
The last two terms in Eq.~9! have a contribution orders o
magnitude smaller than the amplitude of the Lorentzians
induce a slight pulling of the peaks towards the central p
@2#. The symmetry of the different contributions is such th
the ratio of the integrated contributions of the central pe
and the Brillouin components is constant and given
g21.
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Figure 2 illustrates the composition of the central pe
The simulation results overlap perfectly with the Boltzma
and Landau-Placzek approximations. The contributions
the diffusive modes to the central peak are indicated se
rately and for comparison a least square fit based on Eq~9!
to the whole spectrum, including the Brillouin peaks outsi
the interval shown, is made based on approximating the c
tral peak by a single Lorentz.

As can be seen from the Landau-Placzek expression~9!
one of these contributions will vanish in the limits wheres6

o

converge tox andD and the central peak reduces to

Scen~k,v!

S~k!
5

g21

g

2xk2

v21~xk2!2
, ~10!

even though the other transport coefficient remains finite.
mentioned before, this occurs at a limited set of locatio
such as the low/high-density limit, single specie limits, a
the limit of equal red and blue density. In addition to the
general limits it is also found in the low/high-temperatu
regions close to densities where all rings of particles with
same absolute velocity are completely filled or empty@13#.
This reduction of the central peak to a single Lorentz in
low-density limit is also found in the very dilute limit o
binary solutions. But contrary to what is found here, it
usually the thermal diffusivity that disappears@1,2#.

If s6
o are sufficiently different, one can separate the t

contributions in the spectrum outside the limits mention
above~Fig. 2!. This does not automatically imply that on
could obtain the transport values of interest from the exp
mental spectrum only, because they can still differ sign
cantly fromx andD.

In the low-density limit we can identifyD with the mass
diffusion of the GBL model. In the limit of a single speci
this is no longer true if one goes to higher densities, ev
though all other properties converge to their GBL valu
The origin of this problem is found in the possibility to hav
more than one particle with the same velocity in this mod
Continuous theory suggests thatD is not the correct gener

FIG. 2. The central part of the spectrum in the Boltzmann
proximation, the Landau-Placzek approximation, thes6

o contribu-
tions are shown separately. The system parameters areu50.1, r
56.5, Pr50.05,kx5432p/512. The wave vectork and frequency
v are given in reciprocal lattice and time units, respectively.
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BRIEF REPORTS PHYSICAL REVIEW E 64 062102
alization of the diffusion@2#. This is consistent with the way
in which this quantity arises in the present model@15#.

The proper generalization of the diffusion is not com
pletely trivial. There is some ambiguity in the choice o
needs to make. In a continuous fluid one would consider
decay of a signal of the type

udiff &5
uR&
Pr

2
uB&
Pb

, ~11!

whereuR& im5d rm anduB& im5dbm . A spectrum based on thi
normalized density difference, however, leads to Brillou
peaks as is shown in Fig. 3. This was already indicated
lier in an athermal binary mixture@14#, where it was pro-
posed to use

udiff &5
uR&

^RuR&
2

uB&

^BuB&
. ~12!

FIG. 3. A diffusive spectrum based on the different possi
choices for the density difference. The curve labeled by an aste
is corrected by subtracting the propagating part. The system pa
eters areu50.05, r510.0, r r /r50.15, kx52032p/512. The
wave vectork and frequencyv are given in reciprocal lattice an
time units, respectively.
06210
e

r-

But in the thermal case this signal suffers from the sa
problem. In both cases one could, in principle, extract
propagating part, but it is more natural to reformulate t
density of interest to

udiff &5
uR&

^puR&
2

uB&

^puB&
, ~13!

with p5c2/2 being the energy per particle. This proble
originates from the lack of equipartition, but in general t
differences between the various choices will remain sm
@15#.

In conclusion, we presented a thermal binary mixtu
which exhibits spontaneous thermal and concentration fl
tuations. The regular mixture model is much more involv
than the color mixture, but it is closer to the dynamics of re
binary mixtures, as it is able to capture the coupling pheno
ena observed in binary solutions. The coupling between
ergy transport and diffusion results in two diffusive no
propagating modes and in a more complicated structure
the power spectrum. In general, however, these two ‘‘tru
transport coefficients do not seem to correspond with a c
ventional transport coefficient, but always appear in com
nation with each other.

The LGA spectrum is similar in structure as the one
the continuous case. In general, it is impossible to sepa
the entropy and concentration contributions, and the cen
peak can not be described by a single Lorentzian. Howe
in several limits, namely, the low/high-density limit, th
single specie limit, and the equal red/blue limit, the tr
modess6

o converge to generalized thermal diffusivityx and
a mass diffusion likeD. In other cases the different transpo
coefficients can be determined by using the theoret
framework, that provides an accurate description as is d
onstrated by the comparison of the Landau-Placzek exp
sion with simulation results.
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